
CHAPTER 21

Occupancy models – single-species

Brian D. Gerber, Daniel Martin, Larissa Bailey, Colorado State University

Thierry Chambert, Penn State University & USGS

Brittany Mosher, University of Vermont

As ecologists, we are often interested in how species and communities respond to changes in

available resources over space and time. Previous chapters discussed robust methods for evaluating

this relationship when we are able to obtain mark-recapture information for individuals or groups.

When we are unable to mark animals or when the primary interest is in patterns of species occurrence

or proportion of a study area that is occupied or used by a target species, occupancy models provide a

flexible alternative for elucidating associations between species occurrence and the environment. Our

sample unit is thus no longer an individual, but rather a ‘site’, which is defined based on a study’s

objective (e.g., 1km2 grid cell, habitat patch, camera-trap site, transect segment, point-count station).

Occupancy models enable us to estimate the probability of occurrence of a species among sampled

sites, while exploring hypotheses about factors (e.g., habitat, environmental conditions, etc.) thought

to influence the species’ occurrence. The basic sampling design involves randomly selecting a set of

independent sites and surveying each site multiple times (i.e., sample ‘surveys’) during a time period

when the state of a site (occupied or not), does not change (see section 21.3, below). The resulting site-

specific encounter histories enable us to estimate occupancy – the probability that a site is occupied

– while accounting for imperfect species detection. The occupancy approach also enables us to model

variation in occupancy and detection simultaneously, relative to site-specific covariates. Additional

survey-specific factors can be incorporated into the detection process. The assumptions required by

occupancy models share similarities with closed mark-recapture, andare discussed in detail later in this

chapter. Historically, occurrence modeling used logistic or probit regression, which assumes a species

was absent at sites where it was not detected, and thus inference is known to be biased when the

probability of detecting a species at a site is less than one (MacKenzie et al. 2017).

Occupancy models have been used to: assess habitat use by single species and communities (e.g.,

Martin et al. 2007, Ruiz-Gutiérrez et al. 2010), estimate co-occurrence of competing species (e.g., Bailey

et al. 2009), estimate prevalence of pathogens (e.g.,Lachish et al. 2012),quantify effects of habitat fragmen-

tation (e.g.,Gerber et al. 2012),assess differences in occurrence atmultiple scales and to compare different

detection methods (Nichols et al. 2008), and much more. New approaches are regularly being developed

that provide additional flexibility to handle complex study designs, relax model assumptions, and

evaluate complex relationships (e.g., potential species interactions) or improve inference by accounting

for sources of bias (e.g., ‘false-positive’ error associated with species misidentification). Here, we begin

with the basics: a static, single-season occupancy model.
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21.1. The static (single-season) occupancy model

The basic static (single season, single species) occupancy model has two stochastic processes that

determine whether the target species is detected at a site. First, the site i may be occupied by the target

species with probability #8, or unoccupied, 1−#8. Assumptions are covered in detail later on (in section

21.3), but it is important to note that in this static model we assume that a site’s occupancy status

(occupied or unoccupied) does not change between surveys. If site i is occupied, the second stochastic

process is that there is some probability (?8 9) of detecting the species at the site during each survey 9.

Conversely, the probability of not detecting the species at an occupied site on survey 9 is 1 − ?8 9 . If the

site is unoccupied then we cannot detect the species. Of course, this makes the implicit assumption that

a species cannot be erroneously detected at an unoccupied site (i.e., no false positive detections; see

section (21.3.4) for more details on this assumption and possible ways to relax it). Notice that for each

site, we consider whether it is occupied or not occupied and thus are assuming that the state of a site

cannot change over surveys 9 = 1 to � , which is the defined season. In the occupancy literature, the term

‘season’ is similar to a primary period in a robust design (Chapter 15). The definition of a ‘site’ and a

‘season’ should be based on the objective of the study (Gerber et al. 2014, MacKenzie et al. 2017).

Similar to mark-recapture scenarios, now that we have identified our stochastic processes (in this

case, # and ?), we can link our parameters to our detection/non-detection data through probability

statements. Let’s imagine the simplest scenario where site i is surveyed on two occasions (� = 2) and

record the detection history, ℎ8 = ‘01’. We know this site is occupied (because of the detection on 9 = 2).

The species was not detected on survey 1, but was detected on survey 2. We can translate this detection

history into a probability statement, such that,

Pr(ℎ8 = ‘01’) = #
(
1 − ?1

)
?2.

Notice how our verbal and mathematical statement agree; the site is occupied (#) and was not

detected on the first survey (1 − ?1), but was detected on the second survey (?2).

Now, let’s consider the slightly more difficult situation when there were no detections of the species,

such that ℎ8 = ‘00’. In this case, we don’t know if the site is occupied or not; if the site was occupied we

know that the species was not detected on survey 1 or 2. We allow for both possibilities, that the site

was occupied or unoccupied, by adding the two probabilities together,

Pr(ℎ8 = ‘00’) = #
(
1 − ?1

) (
1 − ?2

)
+
(
1 − #

)
.

Thus, we are explicitly stating that if the site was occupied, we did not detect the species in survey 1

or 2 (the expression to the left of addition sign), while if the site wasn’t occupied (the expression to the

right of addition sign) then there was no probability of detecting the species. The addition sign between

the two probability statements can be read as logical (Boolean) ‘OR’.

To complete this exercise, here are the probability statements associated with the 4 possible detection

histories that can be observed for a study with 2 surveys:

history, ℎ8 probability expression

11 # [?1?2]

10 # [?1 (1 − ?2)]

01 # [(1 − ?1) ?2]

00 # [(1 − ?1) (1 − ?2)] + (1 − #)
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But, what if we didn’t actually survey all sites equally? Do we ignore this information? Absolutely not.

Not being able to sample all sites equally is one of the most common circumstances in any field study.

Thus, to specify the correct model, we need to differentiate a survey with no detection from that of not

conducting a survey, such that there was no possibility of a detection. To do this, we acknowledge that

the probability of detecting the target species when we don’t survey a site is zero. For example, suppose

we survey site 1 three times and obtained the detection history, ℎ1 = ‘000’, while we only surveyed

site 2 twice, having missed the second survey because our vehicle broke down. Thus, we obtained the

detection history, ℎ2 = ‘0.0’ (where ‘.’ indicates no survey – use of the ‘dot’ notation is discussed in

more detail in Chapter 2 and Chapter 4). We can write our respective probability statements as,

Pr(ℎ1 = ‘000’) = #
(
1 − ?1

) (
1 − ?2

) (
1 − ?3

)
+
(
1 − #

)
,

Pr(ℎ2 = ‘0.0’) = #
(
1 − ?1

) (
1 − ?3

)
+
(
1 − #

)
.

Notice that the only difference between these probability statements is that site 2 doesn’t include a

probability associated with survey 2. In other words, the probability of detecting the species during

survey 2 is zero for site 2, because the site was not surveyed.

Now that we can define all probability statements associated with any observed detection history,

including when we are missing data, we can link all our data together in a single model likelihood,

L(#, ?1, ?2 , ?3 | ℎ1, ℎ2, . . . , ℎ# ) =
∏#

8=1
Pr(ℎ8),

or as the log likelihood (which is more convenient to work with),

log
(
L(#, ?1, ?2, ?3 | ℎ1 , ℎ2, . . . , ℎ# )

)
=

∑#

8=1
log(Pr(ℎ8)).

Now, let’s consider a more tangible example; imagine a study where we surveyed 100 sites four

times each (# = 100, � = 4). For simplicity, we will assume constant detection probability, such that

?1 = ?2 = ?3 = ?4 = ? and thus when a detection occurred is irrelevant (i.e., probability statements for

histories with the same number of detections are equivalent). Our detection histories are given in the

following table.

observed frequencies of each

equivalent detection history

detections

per site
equivalent detection histories (ℎ8) probability

10 4 1111 #?4

20 3 1110, 1101, 1011, 0111 #?3(1 − ?)

30 2 1100, 1001, 1010, 0011, 0101 #?2(1 − ?)2

20 1 1000, 0100, 0010, 0001 #?(1 − ?)3

20 0 0000 #(1 − ?)4 + (1 − #)

The likelihood for our data and model, assuming constant detection probability (p) can be specified

using the frequency of each detection history (data: H1 = 10, H2 = 20, H3 = 30, H4 = 20, H5 = 20):

L(#, ? | data) = (#?4)H1 × (#?3(1 − ?))H2 × (#?2(1 − ?)2)H3 × (#?(1 − ?)3)H4 × (#(1 − ?)4) + (1 − #))H5

= (#?4)10 × (#?3(1 − ?))20 × (#?2(1 − ?)2)30 × (#?(1 − ?)3)20 × (#(1 − ?)4) + (1 − #))20.
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To specify our likelihood more generally, we can rewrite it as:

L(#, p | data) =

[
##3

∏�

9=1
?
B 9
9
(1 − ? 9)

#3−B 9

] [
#
∏�

9=1
(1 − ? 9) + (1 − #)

]#−#3

,

where #3 is the number of sites where the target species was detected at least once and B 9 is the number

of sites where the species was detected during survey 9. Let’s now go through a simple example in

MARK where we have a single season without covariates.

21.1.1. Single-season occupancy model – example without covariates

Start a new MARK analysis andselect the ‘Occupancy Estimation Data Type | Occupancy Estimation

with Detection < 1’; this refers to a static, single-season occupancy model.

Select the ‘MLE_Example.inp’ file and view it. You’ll notice there are 4 encounter occasions (surveys),

no groups, and no individual covariates:

This is the same dataset given in the table above. After entering the appropriate information in the

‘Specification’ boxes (title, number of sampling sessions, and so on...), click ‘OK’ and let’s build a model.

Using the PIM chart (shown at the top of the next page), we can build a simple model assuming constant

probability of occupancy and detection, {#· ?·}.
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If we run this simple model and view the real parameter estimates from this model, we see:

21.1.2. Single-season occupancy model – incorporating covariates

In occupancy analysis we are often interested in how the probability of occupancy varies among sites

or whether the probability of detection varies among sites or survey occasions. In these cases, we might

have categorical or continuous covariates that represent hypotheses about ecological or observational

processes. To parameterize a model is to link our parameters (which are bounded between 0 and 1) to

a linear model on the real number line. We commonly use the logit-link function (see Chapter 6),

logit(#8) = �0 + �1G8 ,1 + �2G8 ,2 + · · · + �"G8 ," ,

where G8 ,1 through G8 ," are the covariate values for covariates 1 through " for site 8. The effects, the �s,

are estimated for each covariate.

Similarly, we can consider variation in the detection process across sites and survey occasions,

logit(?8) = 
0 + 
1F8 9 ,1 + 
2F8 9 ,2 + · · · + 
8�%F8 ,�% ,

where F8 9 ,1 through F8 ,�% are the covariate values for site 8 and survey 9 for covariates 1 through � and
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%; here are (� × %) coefficient effects (
). We will illustrate models with these types of relationships in

the examples below.

21.1.3. An example with covariates

Let’s consider a dataset involving northern spotted owls (Strix occidentalis caurina) and barred owls (Strix

varia) in the Pacific Northwest. Barred owls have recently expanded their range and now are present

over the entire range of northern spotted owls. Managers may want to know if northern spotted owls are

being displaced from territories by barred owls. They may also wonder whether barred owls influence

the vocalization behavior (and subsequently, detection probabilities) of northern spotted owls. These

ideas were explored in Bailey et al. (2009) using a more complex two-species occupancy model, which

accounts for the fact that barred owl detection, which we use as a covariate, is imperfect. While the

two-species model is more appropriate for this dataset, we use known barred owl detection as a simple

site covariate here for demonstrative purposes only.

Day andnight surveys were conductedat159 sites thatwere roughly the size ofa northern spottedowl

territory. Owls were detected using vocal imitation or playbacks of spotted owl calls. Multiple surveys

were conducted at each site, and observers recorded whether or not spotted owls were detected on each

day or night survey. They also recorded whether or not barred owls were ever detected or observed at

the site during the season; this information was used as a static site covariate.

As in the preceding example, open MARK and select the ‘Occupancy Estimation | Occupancy

Estimation with Detection <1’ data type (we’ll mention some of the other options listed later in this

chapter). After giving your analysis a title and selecting the input file ‘NSO_SSoccupancy.inp’, you’ll

need to enter some information about the dataset. Click ‘view file’ to open the input file:

The input file contains the site number, followed by the encounter history at a particular site. We

can see that up to six surveys were conducted at each site (encounter occasions = 6). Notice that some

encounter histories (sites 1, 3, and 5, for example) contain dots (‘.’) indicating missing observations.

Recall that missing observations do not enter into the likelihood and therefore do not influence estimates

of detection probabilities.

The remaining columns in the input file are a frequency column, followed by 8 individual covariates.

The first covariate denotes whether barred owls are known to exist at a given site, the second column

gives the proportion of edge habitat at each site, and the remaining 6 columns denote whether a day

(0) or night (1) survey was conducted for each of the 6 surveys.

Chapter 21. Occupancy models – single-species



21.1.3. An example with covariates 21 - 7

You’ll notice the value 0.5 also occurs in the day/night covariate columns. Unlike missing survey

information, MARK does not tolerate missing covariate values. We ‘trick’ MARK into thinking the

covariate exists by replacing missing covariate values with a placeholder (in our case 0.5). As long as

those missing covariate values are paired with missing survey information, neither piece of information

is included in the likelihood and thus won’t affect estimates and inferences. It’s best to name the

individual covariates. We called ours BAOW (for barred owl), EDGE (for proportion of edge habitat), and

DN1-DN6 to indicate whether each survey was conducted during the day or night (Day = 0, Night = 1).

Open the PIM chart and investigate the parameters that we will be dealing with. You’ll see there

are just two parameter types listed and the default model structure includes time-varying detection

probability and a constant occupancy probability. Remember that because occupancy is assumed to be

closed to changes within a season, occupancy probabilities cannot vary with time (i.e., across surveys).

Run the default model,which we might call {#· ?C}. This model should have 7 parameters (one detection

probability for each of 6 surveys, and one occupancy probability) and AIC2 = 840.58. If we look at the

real parameter estimates, we see that the occupancy probability of northern spotted owls across sites is

0.59 with detection probabilities ranging from 0.50 to 0.68 depending on the survey:

In occupancy modeling, we are generally interested in how occupancy and detection probabilities are

influenced by environmental or survey covariates of interest. Here, we are interested in investigating:

1. how known barred owl occurrence may influence spotted owl occupancy,

2. how the proportion of edge habitat influences spotted owl occupancy,

3. if spotted owl detection probability varies among day and night surveys, or among sites

with and without known barred owls.

To evaluate hypotheses related to individual covariates we have to use the design matrix. First, let’s

run a model where spotted owl detection depends on known (naïve) barred owl occurrence. Retrieve
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your {#· ?C} model and open a (reduced) design matrix with 3 columns; the first six rows in this matrix

labeled1:p through6:p represent survey-specific detection probabilities and the seventhrow represents

occupancy (psi). It is worth noting that both parameter types (# and ?) share a single design matrix in

MARK, as opposed to other software (notably, program PRESENCE). This makes it possible for these

two parameter types to share covariates, but remember, just because something is possible doesn’t mean

you should do it. You may want to refer to Chapters 6 and 11 fora refresheron constructing linearmodels

in MARK using individual covariates.

Suppose we want to model spotted owl detection probability as a function (on the logit scale) of

known barred owl occurrence at site i, and model spotted owl occupancy as constant among sites:

logit(?8) = �1 + �2(BAOW8),

logit(#) = �3.

It’s (very) helpful to label your columns, as shown, by clicking the ‘Appearance’ tab and then ‘Label

Column’ while the design matrix is open. Run this model. The model should have 3 parameters and an

AIC2 of 798.95.

Let’s run a few more models using the design matrix to round out our model set. Fit the model

{#BAOW ?C} by opening a reduced design matrix with 8 columns. The detection probabilities should have

a common intercept that is interpreted as the detection probability at a reference survey (time 1 in the

example design matrix below), and an additional parameter for each subsequent survey. We wish to

model occupancy as a function of known barred owl occurrence. This is translated to a logit-linear

model where detection varies by survey 9 and occupancy varies by site 8:

logit(? 9) = �1 + �2(time2) + �3(time3) + �4(time4) + �5(time5) + �6(time6),

logit(#8) = �7 + �8(BAOW8).

Run this model. It should have 8 parameters and AIC2 = 842.76.
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Let’s also run {#BAOW ?Night/Day} to explore the effect of the survey time (day or night) on detection

probability. This model should have 4 parameters:

logit(? 9) = �1 + �2(DN9),

logit(#8) = �3 + �4(BAOW8).

We could fit {#BAOW ?BAOW} to explore the hypothesis that barred owls affect both the occupancy and

detection probabilities of spotted owls. This model should have 4 parameters:

logit(?8) = �1 + �2(BAOW8),

logit(#8) = �3 + �4(BAOW8).

Finally, let’s run a model where occupancy of spotted owls varies with the proportion of edge habitat

at a site and detection varies with barred owl occurrence. We’ll call this model {#EDGE ?BAOW}.

logit(?8) = �1 + �2(BAOW8),

logit(#8) = �3 + �4(EDGE8).

Now, take a look at the model selection table we have created. It should contain 6 models, three

of which have some support. All three supported models suggest that known barred owl occurrence

influences spotted owl detection probability, but there is uncertainty in whether occupancy varies with

known barred owl occurrence (model 2), proportion of edge habitat (model 3), or is constant (model 1).

Both the second and third models differ from the first by a single parameter.

If we look closely at the AIC2 of these three models, we notice that the {#EDGE ?BAOW} is almost exactly

2 AIC2 units different from the top model, and has a nearly identical deviance. This indicates that the

2-unit penalty of adding an additional parameter was not compensated with an increase in model fit.

The ‘EDGE’ covariate appears to be a ‘pretending’ or ‘uninformative’ variable – it rides the coattails of

the best model’s structure, and does not add anything to our biological understanding of this system

(see the -sidebar- on pp. 61-62 in Chapter 4).
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We can confirm that EDGE is an ‘uninformative’ variable in a couple of other ways. First, let’s look at

the estimated coefficient describing the effect of EDGE (�4):

As expected, the effect of edge is estimated very close to zero, with a confidence interval that includes

both negative and positive values. Another way to visualize that edge has little effect on occupancy is to

plot occupancy over the range of observed edge values using the ‘Individual Covariate Plot’ function

(first discussed in section 11.5 in Chapter 11). Highlight the {#EDGE ?BAOW} model in the browser, and click

the blue ‘Individual Covariate Plot’ icon. Select the parameter (#) and covariate (EDGE) that we want

to plot and press ‘OK’:

We see that occupancy is virtually constant across values of the proportion edge covariate, confirming

that edge is a pretending variable. As we continue to work through the rest of this exercise, you might

consider whether the effect of barred owl occurrence on occupancy probability is also a pretending

variable.

All supported models in the candidate set suggest that known barred owl occurrence influence

spotted owl detection probability. The best-supported model received 0.56 of the weight and suggested

occupancy was constant among sites with detection probability depending on the occurrence of barred

owls. If we look at the estimated coefficient that describes the relationship between detection probability

and known barred owl occurrence in the top model (top of the next page), we see that the effect of barred

owl occurrence on detection probability is negative and is estimated to be−1.47 on the logit (or log-odds)

scale.

Chapter 21. Occupancy models – single-species



21.1.3. An example with covariates 21 - 11

But just how different is the detection probability of northern spotted owls when barred owls are and

are not detected at a site? If we simply look at the real parameter estimates, what we see is the detection

probability at the average value of the BAOW covariate (0.23). This is not informative for a binary variable

like BAOW. To see what the detection probability is when ‘BAOW=1’ or ’BAOW=0’, we can either re-run the

model and check ‘User-specified covariate values’ in the ‘Run’ dialogue box, or we can use the

‘ReGenerate Real and Derived Estimates’ function in the browser ‘Run’ menu.

We’ll illustrate the ‘User-specified covariate’ option here, and the ‘Re-generate’ option in the

model averaging section below. Retrieve the top model and click the ‘Run’ icon. In the bottom right

corner of the dialogue box select ‘User-specified covariate values’. This tells MARK that we’d like

real parameter estimates for a certain covariate value, rather than for the mean value. Change the model

name to include ‘BAOW=1’ and press ‘OK to Run’. When prompted, input a 1 for the BAOW covariate value:

You’ll notice that the AIC2 of this model is identical to the first model you ran with this structure –

that’s because it’s the same model. However, when we examine the real parameter estimates, you’ll see

that the detection probabilities given are for the particular case where BAOW=1. Repeat these steps but

set BAOW=0. You’ll find that the detection probability of northern spotted owls is 0.71 when barred owls

are not found at a site, and is only 0.36 when barred owls are known to be present. An odds ratio for

this difference can be obtained by exponentiating the coefficient of the BAOW effect (�2):

4�2 = 4(−1.47)
= 0.229.

Thus, the detection of northern spotted owls is 0.23 times lower when barred owls are known to be

present! Perhaps more intuitively, northern spotted owl detection is 4.35 times higher when barred owls

are not detected (1/4�2 = 4.35). For a refresher on odds ratios, see section 6.13.1 in Chapter 6.
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21.2. Model averaging

How can we obtain our best estimate of northern spotted owl occupancy,given the slight model selection

uncertainty we have? Model averaging (introduced in Chapter 4) gives us a way to honestly represent

the uncertainty of our estimates, which include two components: parameter uncertainty and model

uncertainty. When we use model selection criteria, there is virtually always uncertainty regarding which

model is the best. Therefore, the measures of uncertainty that we report (e.g., SE, 95% CI) should include

this model selection uncertainty in addition to the parameter uncertainty present in any given model.

Before we model average, let’s remove the {#EDGE ?BAOW} model because we have confirmed (above)

that this model doesn’t contain any information not already present in other models. Let’s also remove

the {#· ?BAOW=1} and {#· ?BAOW=0} models because they are identical to {#· ?BAOW} and we don’t want to

artificially inflate that model’s support. We are left with a set of 5 models,with only two models receiving

any AIC2 weight:

When we model average, we take the real parameter estimates from each model and weight them

according to that model’s support. Therefore, before we model average we need to consider which real

parameters are of interest and which covariatevalues are necessary to create those real parameter values.

Suppose we wanted estimates of spotted owl occupancy and detection when barred owls are present.

Before model averaging, we’d want to update our models to reflect BAOW=1, so that real parameters that

are averaged are comparable. We could retrieve and rerun each model and use the ‘User-specified

Individual Covariates’ function that we discussed above, but that could get tedious, especially for

large model sets or several covariate combinations of interest.

An alternative is to use the ‘Regenerate Real and Derived Estimates’ function in the ‘Run’ menu

which does not rerun models, but does calculate new real parameter estimates for particular covariate

values. Select this option in ‘Run’, then select all models and press ‘OK’. Now you can input covariate

values of interest. In our case, we want to set BAOW=1. EDGE no longer occurs in our model set, so it can

be ignored. The day or night survey indicator does exist in the model set, but these models containing

the survey time covariate didn’t receive any weight so that covariate can also be ignored. After pressing

‘OK’, MARK will regenerate real and derived parameter estimates for each model. Take a look at the real

estimates from the top model to be sure it worked. Sure enough, BAOW=1 is now listed as the covariate

value of interest, and the corresponding detection probability (0.36) is reported.

Now that all models are reporting real parameter estimates for a consistent scenario (BAOW=1), we

can model average the detection probability estimates at sites where barred owl were detected during

the season. The ‘Model Averaging’ option is in the ‘Output’ menu, and we will select ‘Real’ parameter

estimates. Next, specify the parameters of interest. Because the models with time variation in detection

receive no AIC2 weight, we can get away with selecting any of the 6 detection probabilities. We will also

select parameter 7, which is occupancy. Once we press ‘OK’ our two estimates of interest are generated

(shown at the top of the next page).

At sites where barred owls are detected during the season our best estimates of spotted owl detection

and occupancy probability are ?̂ = 0.36 and #̂ = 0.62. We can use the ‘Regenerate Real and Derived

Estimates’ again for the scenario where barred owls are not detected (BAOW=0). If we do this, and model
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average once again, we find that our best estimates of spotted owl detection and occupancy are ?̂ = 0.71

and #̂ = 0.60. By comparing the real estimates and viewing the model selection results, we can infer,

the impact of known barred owl presence on spotted owls seems to be largely related to detection and

not to occurrence.

begin sidebar

conditional site occupancy

Ecologists are often interested in the probability of occupancy at a site, conditional upon the species

not being detected. We know that if a species was detected at a site that it is occupied, but what about

the sites where there were no detections? We can derive an occupancy estimate, conditional on the

survey effort (detection history), using the following expression,

#̂8 ,2>=3; =
#̂8(1 − ?̂8)

�

(1 − #̂8) + #̂8 (1 − ?̂8 )
�
,

using estimated probabilities of occupancy and detection (?) and the number of surveys (J). Notice

what this expression represents: the numerator is the probability that the species occurred, but was

not detected during J surveys. The denominator represents the probability that the species was not

detected, either because it was absent (1 − #8) or because it was present but not detected. So the

expression represents the probability that the site was occupied,given that the species was notdetected.

Ideally, this probability would be very low for barred owls to justify using known barred owl detection

as a covariate in the example above.

end sidebar

We may want to compare our occupancy estimate to a naïve occupancy estimate, which is simply

the proportion of sites where the species was detected at least once. We refer to this estimate as ‘naïve’

because it ignores the possible influences of imperfect detection (thus underestimating occupancy) and

typically lacks a measure of precision. In our example, we detected spotted owls at 92 of the 159 sites,

so our naïve estimate of occupancy is (92/159) or 0.58. To compare this value to an occupancy estimate,

we typically report the estimate of occupancy from a model that accounts for variation in detection

probability, but assumes that occupancy is constant among sites.

Forexample, the model {#· ?BAOW} accounts for the importantvariation in detection probability among
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sites with and without known barred owls; the occupancy estimate from this model is 0.60 ((̂�(#̂) =

0.04). With this example, there is little difference between the estimated and naïve occupancy values

because the probability of detecting spotted owls at least once on sites without known barred owls is 1

(?∗ = 1 − (1 − ?(BAOW=0))
6
= 1 − (1 − 0.71)6 = 1.0). This probability is also very high on sites with known

barred owls (?∗ = 1 − (1 − ?(BAOW=1))
6
= 1 − (1 − 0.36)6 = 0.93); however, on sites with missing surveys

this cumulative detection probability is obviously lower.

Sometimes biologists are interested in estimating the proportion of occupied sites in the sample, in

addition to using the sample to make inferences about occupancy for the entire population of interest.

In these cases, the occupancy estimates from a model with constant occupancy e.g., {#· ?BAOW}) provide

a good approximation for the overall proportion of sites occupied in the sample. Another estimator that

is often used, if you want to incorporate covariate effects, is to calculate the mean of the site-specific

occupancy estimates for each site in the sample. For example, let’s suppose that our second model

{#BAOW ?BAOW}was much better supported than the constant occupancy model. In this case,we might want

to know the estimated proportion of sites occupied using this model because it accounts for variation in

occupancy probabilities among sites. An easy way to calculate the mean of the site-specific occupancy

estimates is to use features found in the ‘Individual Covariate Plot’. To demonstrate, highlight the

{#��$, ?��$, } model in the browser, and click the blue ‘Individual Covariate Plot’ icon. Select

the parameter # (Psi) and covariate (BAOW) and click the two boxes at the bottom to export the actual

estimates into Excel, then click ‘OK’.

A graph will appear with only two estimates, one for BAOW = 0 (# 0.59) and another for BAOW = 1

(this estimate may be hidden behind the ‘Predicted’ box, but it is approximately 0.67). Additionally, an

Excel spreadsheet with the 159 site-specific occupancy estimates should appear. Notice the site-specific

values of each covariate in the model are reported for each site and the associated site-specific occupancy

estimate - there are only two different estimates in our case because there are only two values for the

BAOW covariate. We can easily calculate the mean of these site-specific occupancy estimates (0.605) and

the associated standard error (0.03). A final estimator for the proportion of sites occupied in the sample

would be to calculate the site-specific conditional occupancy estimates (see above side-bar) which would

account for variation in survey effort across sites, and then sum the conditional occupancy estimates.

Importantly, the mean of the site-specific occupancy estimates and the sum of the conditional

occupancy estimates are estimators for the proportion of sites occupied. How relevant these estimates
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are to the proportion of sites occupied in the entire area of interest depends on how representative the

sample is when compared to the entire population of sites. Random selection of sites willhelp insure that

the surveyed sites are representative of the entire population of sites in the area of interest; however,

if a stratified random design is employed there are occupancy estimators that weight strata-specific

occupancy estimates by appropriate inclusion probabilities (e.g., Gould et al. 2012).

21.3. Model assumptions

As with any statistical model, we make assumptions which if correct, allow for appropriate inference

from the data, based on model parameters. However, just because we violate a model assumption, does

not necessarily mean that our inferences are wrong; in some cases, inferences may be robust to violations

of an assumption. In these cases, we can say that a model is robust to the assumption. Generally, we

want to try and meet all model assumptions through study design or model specification.

The five basic occupancy model assumptions are:

1. The occupancy status at each site does not change during the survey period. In other words,

sites are closed to changes in occupancy status. For example, in the case where we are

studying the occurrence of snapping turtles at a sample of wetlands, if a wetland is occupied,

we assume that the species is available for detection during each survey during the sampling

season.

2. The probability of occupancy is constant across all sites, or if heterogeneous, it is appropri-

ately modeled using site-level covariates.

3. The probability of detection is constant across all occupied sites, or if heterogeneous, it is

appropriately modeled using site or survey level covariates.

4. The detection of species and thus the detection histories at each site are independent.

5. The species is not misidentified, there are no false positives, meaning it is impossible for a

detection to occur at an unoccupied site: false detections from species misidentification do

not occur. Thus, detections can only occur at occupied sites.

These assumptions are discussed in detail in MacKenzie et al. (2017); the authors describe potential

violations of these assumptions and study design considerations to meet these assumptions. In this sec-

tion, we briefly summarize these assumptions and describe recent work to relax or test the assumptions.

21.3.1. Closure

The model described above applies to a single season. The occupancy state is assumed to be constant

across the entire season, meaning that the occupancy state does not change between surveys. A site

that is occupied (or unoccupied) remains so for all surveys of that season. This assumption also extends

to the dynamic (multi-season) occupancy model (discussed later in this chapter). The dynamic model

considers several seasons between which the occupancy status might change, and is similar to the robust

design presented in Chapter 15. In the occupancy literature, primary periods are often referred to as

‘seasons’ and secondary sessions as ’surveys’. Kendall & White (2009) reviewed the robustness of the

single-season occupancy model to violations of the closure assumption. They confirmed that if a species

is randomly available for detection at a site, as might be the case for a wide-ranging, territorial species

that moves in and out of the sample unit, the resulting occupancy estimates are unbiased but should

be interpreted as probability of the unit being ‘used’ by the species.
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In another example, suppose we are interested in the occurrence of a neotropical bird species within

the breeding range and a randomly placed fixed-radius point count was located near the territory of a

single male. The species may not always be within the sample unit (fixed-radius point count area) during

every survey conducted at the site, but the species movement in and out of the unit likely resembles a

random process.

In these cases, detection probability is really a product of two probabilities: (1) the probability the

species is available for detection within the site during a given survey, and (2) the probability of

detection given the species is available. These two probabilities cannot be separated in the single-season

occupancy model,but sub-sampling at a finer temporal scale can allow separation of these two processes

– see Nichols et al. (2008) and Rota et al. (2009) for examples.

In situations where availability is non-random, bias in occupancy estimates is expected (Kendall &

White 2009, Kendall et al. 2013, MacKenzie et al. 2017). There are various ways to reduce or eliminate bias

caused by non-random species availability, or non-random movement in and out of sites, depending

on the temporal pattern of species availability. When species movement consists of ingress only, or

egress only, surveys can be pooled to eliminate bias (see Kendall & White 2009, and Kendall 1999 for

details). Weir et al. (2005) dealt with seasonal changes in detection for different species of anurans by

modeling detection probabilities as a function of date, and this approach is effective at eliminating bias

in occupancy (Kendall et al. 2013).

Several studies have employed additional surveys at a finer temporal scale to separate the processes

of availability and detection (Rota et al. 2009, Nichols et al. 2008). For example, Otto et al. (2013) suspected

that seasonal availability of a terrestrial salamander species might change during the summer, a time

periodoverwhichoccupancy is usually assumedto be static. Additional temporal sub-sampling allowed

these authors to differentiate seasonal availability and potential behavioral responses of the species

due to habitat disruption during surveys. Temporal sub-sampling enables investigators to use dynamic

occupancy models to test for closure by fitting models where extinction and colonization probabilities

are fixed to zero and comparing them to models where these probabilities are estimated.

Finally, Kendall and colleagues have developed an occupancy model akin to the open robust design

models presented in Chapter 15. The model explicitly estimates entry and exit parameters, enabling

investigators to estimate residence or stopover time (phenology) among sites during a given season

(Kendall et al. 2013, Chambert et al. 2015).

21.3.2. Unmodeled heterogeneity in occupancy or detection probability

The second and third occupancy assumptions imply that variation in occupancy and detection prob-

ability is appropriately modeled with covariates. The impact of unmodeled variation in occupancy

probability among sites has not been well studied relative to the other model assumptions. Still, this

situation likely occurs, especially when analyzing historic data where relevant covariates were simply

notcollected. Forexample, the distribution ofmost carnivores is likely a function of localprey abundance

or density, but these covariates are often not available. Coarse-scale habitat metrics may serve as a proxy

for such data, but in some cases this information may not be available or is a poor representation of the

abundance distribution of primary prey species. In these cases, we suspect that the resulting occupancy

estimates represent the average occupancy for the sampled sites and the reported variances are likely

conservative (MacKenzie et al. 2017).

Unmodeled heterogeneity in detection probability will often result in negatively biased occupancy

estimates (e.g., Royle & Nichols 2003, MacKenzie & Bailey 2004, Royle 2005, MacKenzie et al. 2017).

Detection probabilities may vary among sites, for example among habitat types, or among surveys due

to environmental factors, observers, or seasonal behavior. If this variation is not modeled via covariates,
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the resulting estimates can be biased. The degree of bias relates to the magnitude of the variation and

the number of surveys and sites. One unique form of heterogeneity that cannot be easily modeled with

covariates is variation in detection due to the size of the local population at each site (i.e., a species local

abundance).

Indeed, if a site is occupied by many individuals (of the focal species), it should have a higherdetection

than sites that are occupied by only a few individuals. Ways of dealing with this type of heterogeneity

in detection is the focus of the next section.

21.3.3. Lack of independence

Non-independence among detection histories can arise if sites are located too close to one another,

allowing an individual animal to be detected at multiple sites simultaneously. For example, if sites are

located nearby, a spotted owl hooting at one site could also be recorded during the same survey at

the other nearby site. Likewise, if remote-cameras are located near each other, a single individual may

be detected at multiple cameras (sites) during a given week (survey). In these instances, the number

of sites surveyed (or the number of detection histories) is not a good representation of the number

of independent units in the study. This is a form of overdispersion (Chapter 5), and in these cases,

the estimates of occupancy are often unbiased, but estimates of precision are too small because the

true number of independent sites is smaller than the number of sites surveyed (MacKenzie & Bailey

2004, MacKenzie et al. 2017). Employing sampling designs where sites are randomly selected with

appropriate spacing to assure independence is the best way to meet this assumption; however,goodness-

of-fit assessments have some power to detect and adjust for this type of overdispersion (MacKenzie &

Bailey 2004, MacKenzie et al. 2017 p. 155 ‘Assessing Model Fit’).

Another type of detection dependence may occur in monitoring programs where an observer is

assigned a subset of sites,and surveys those sites multiple times. In these cases,once the observerdetects

the species, they know where to look for the species on subsequent surveys, increasing the detection

probability after first detection. This is particularly relevant if multiple surveys are conducted on the

same visit. For example, suppose that we are again studying the occurrence of a neotropical bird species

and during a single visit to our randomly chosen fixed-radius points, a single observer conducts three

5-minute surveys, perhaps with little time between surveys. In this case, once the observer sees or hears

a given species, the observer is alerted to its location and will be more likely to see or hear it in the

subsequent surveys. Obviously, the detection of the species is no longer independent and the process

resembles a behavioral response that is common in many closed-population models, where the initial

capture probability is lower than the recapture probability (i.e., a trap-happy response, Chapter 14).

Accordingly, we can fit models that account for this potential effect. How do we do this without

the equivalent of a ’recapture probability’ for detection? Well, one way is to develop survey-specific

covariates that indicate a permanent change in the detection probability after first detection at a site.

For example, consider the detection histories from a couple of the spotted owl sites in the previous

example, and let’s pretend we had no other covariates. Here are the detection histories for sites 1, 2, 4

and 6, followed by the frequency column:

/* 1 */ 0000.. 1

/* 2 */ 011111 1

/* 4 */ 100000 1

/* 6 */ 00010. 1

To develop the six survey-specific covariates to represent this behavioral effect (call these beh_t1,

beh_t2, beh_t3, beh_t4, beh_t5, beh_t6), we simply denote whether the species had been previously

detected (1) or not (0) for each survey.
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So, the six covariates would look like:

/* 1 */ 0000.. 1 0 0 0 0 0 0;

/* 2 */ 011111 1 0 0 1 1 1 1;

/* 4 */ 100000 1 0 1 1 1 1 1;

/* 6 */ 00010. 1 0 0 0 0 1 0.5;

Notice for site 2 the covariate values are 0 (beh_t1=t2=0) until after the species is detected, when the

values switch to 1 (beh_t3=t4=t5=t6=1). Likewise, the covariate remains 0 for site 6 until after the 4th

survey, when it changes to 1 for survey 5, and there is a missing value for survey 6 (denoted with 0.5).

To fit this ‘behavioral’ detection structure with constant occupancy, {#· ?14 ℎ0E} you need to use the

design matrix and it would look like this:

Hand-coding these survey-specific covariates for each site can get a little tedious, so MARK has a

function that calculates the appropriate value for each site. ‘PriorCapL’ indicates whether a species was

previously captured or observed between any two surveys. For example, priorcapl(i,j) will return

the value of ‘0’ if the species was not previously captured on surveys 8, 8 + 1, 8 + 2, ..., 9, and ‘1’ if the

animal was captured during this set of surveys. Priorcapl(1,1) is valid – again returning ‘0’ if the

species was not detected on survey 1, and ‘1’ if the species was detected. The function calculates the

appropriate value (0 or 1) for each site in the sample, and uses it as a survey- and site-specific covariate.

An appropriate design matrix for the model {#· ?behav} would look like this:

Real and derived parameter estimates (shown at the top of the next page) are based on the first

encounter history, and this encounter history is printed with the real parameter estimates in the output

file. In our case, the first detection history consists of all zeros, so only the initial detection probability

is reported (?̂initial = 0.46).

Chapter 21. Occupancy models – single-species



21.3.4. False positives 21 - 19

However, the estimated effect is positive,

Thus, the estimate of detection probability does increase following initial detection:

?after =
4(−0.168017+0.9412005)

1 + 4(−0.168017+0.9412005)
= 0.68,

but this model is not well supported relative to the detection structures that include the effect of barred

owl (ΔAIC2 = 25.4).

21.3.4. False positives

The fifth assumption implies that detections can only occur at occupied sites. If a detection is made at

a given site, it is assumed to be true detection, which confirms (without error) the occupied status of

that site. However, occupancy monitoring can be vulnerable to false positives, i.e., detections reported at

sites that are not occupied by the species of interest. False positives can be the result of different types of

processes. First, they can result from the misidentification of a similar species. This is relatively common

in acoustic surveys (e.g., McClintock et al. 2010; Miller et al. 2012), especially when many individuals are

calling (full choruses) or in the presence of background noises (e.g., wind) . Misidentification can also

be a pervasive issue in visual surveys, especially when sister species live in sympatry (e.g., passerines,

some lizards and freshwater mussels) or when monitoring larval or juvenile life stages that are hard to

identify (e.g., tadpoles).

In some cases, false positives can originate from unreliable or untrustworthy observers. This is espe-

cially true when data are obtained from public surveys, where ‘observers’ (people that are interviewed)

might have a personal interest in providing a desired answer (e.g., the presence of a rare species). A good

example is provided by Pillay et al. (2014),where observations of large mammals in India where obtained

by interviewing local people. For species involved in human conflicts (e.g., tigers), local informants were

more likely to provide ‘false positive’ observations.
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When not accounted for, false positives will systematically induce a positive bias in occupancy

estimators. McClintock et al. (2010) and Miller et al. (2012) found that even small levels of false posi-

tive detections (as little as 1% of all detections) could cause severe overestimation of site occupancy

probability. These studies, also found that the occurrence of false detections was more common than

expected. For instance, an experiment (frog survey) by Miller et al. (2012) found that about 8% of all

recorded detections were false positives, a rate that would induce severe biases. This issue should thus

not be overlooked!

When designing an occupancy study, think about what sources could cause false detections and try

to mitigate these. Mitigating false positives through your study design and the methods of detection

you employ (e.g., visual vs. acoustic detection; animal signs vs. direct observations) is important. If false

positives are still likely to occur in your dataset despite all your efforts, don’t worry. Occupancy models

have been extended to deal with this issue and correct the bias – see details in section (21.7).

21.4. Unobserved detection heterogeneity

In this section we discuss methods that can be used to model heterogeneity in species detection

probability without collected covariates.

21.4.1. Finite mixtures

One of the banes of mark-recapture and occupancy modeling is individual or site-level heterogeneity

in the detection process (see Chapter 14). In many cases, we have explicit hypotheses regarding why

the probability of detection may vary across sites, which we model via individual covariates. However,

there are also many times that site-level heterogeneity is unexplainable. We don’t want to ignore this

potential variation as it may lead to biased estimates of occupancy. There are several ways we can handle

general heterogeneity in the single-season occupancy model when working in MARK. It should be

noted that comparing models with different types of heterogeneity or between models with and without

heterogeneity using AIC should be done with some caution. AIC depends on regularity conditions for

properties of consistency (‘AIC will do the right thing’) which are not generally met with mixture models

(Pledger & Phillpot, 2008). There is also some question as to whether the same is true for comparing

random effect models’ integrated likelihood with model likelihoods without a random effect using AIC

(G. C. White, pers. comm.). Whether AIC performs appropriately may depend on many factors, and is

an issue which merits further study.

The first option to deal with unmodeled heterogeneity is the discrete- or finite-mixture approach

(introduced in Chapter 14), which is the second data type listed when you select the Occupancy

Estimation data type ( labeled ‘Occupancy Heterogeneity with Detection <1’).

After choosing this model type, the first thing we will see is a dialog box asking us how many a priori
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mixtures we want to choose:

Generally, most data sets will only be able to accommodate 2 to 3 mixtures. The basic idea is

that the number of mixtures corresponds to the number of ways the data can be split with different

corresponding detection probabilities.

For two mixtures, the detection probability for site 8 (?8) is,

?8 =

{
?8 ,� with Pr(�)

?8 ,� with Pr(1 − �),

where � and � represent the two mixtures. Thus, for two mixtures, we need to estimate 3 parameters,

?8 ,� , ?8 ,�, and�. The parameter� represents the proportion of sites with detection probability ?8 ,�,while

1−� is the proportion of sites with detection probability ?8 ,�. What� really means, depends strongly on

the underlying detection process, which may not be discrete at all; thus, not interpreting this parameter

to mean anything is probably safest (see Chapter 14). For> 2 mixtures, there are additional�parameters

that need to be estimated and constrained to sum to 1.

For the encounter history, ℎ8 = ‘1001’,we would write our probability statement indicating 2 mixtures

and no temporal variation as:

Pr(ℎ8) = ‘1001’ = #
[
�?2

�

(
1 − ?2

�

)
+ (1 − �)?2

�

(
1 − ?2

�

) ]
.

We know the site is occupied (# ), but we don’t know which detection probability is most appropriate

(?� , ?�), so we allow for both possibilities. Note that generally, we need 5 or more sampling occasions

to fit heterogeneity models.

In MARK, we have three PIM’s: #,� , and the ?’s.
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The first row of the detection probability PIM corresponds to the ?� parameters, while the second

row corresponds to the ?� parameters. Here, we specifying the model {#· �· ?ℎ4C−2<8GCDA4B}, which

corresponds to the same model definition used for the previous probability statement.

21.4.2. Random effects

A different way to accomodate variation in the detection process is through a random effect. Instead of

considering a number of different finite detection probabilities (mixtures), we might want to consider a

distribution of detection probabilities with a mean � and standard deviation �. MARK now allows for

random effects in many types of models, including the occupancy models (for an introduction to the

theory, and a collation of which data types allow for random effects, see Chapter 14, and the addendum

to that chapter). The simplest random effect model includes a single mean process (�) and variation

around this mean (�). This model would look like,

logit(?8 9) ∼ N(�, �).

A more complicated model might consider the mean process to vary by sampling occasions, such as,

logit(?8 9) ∼ N(�9 , �),

where we are estimating � means (�), but only one � . A figure might help in understanding how the

standard deviation on the logit-scale influences the variation in the detection process:

To fit random effects using likelihood theory, MARK integrates outs the random effect using Gauss-

Hermite numerical quadrature (McClintock & White 2009; Gimenez and Choquet 2010; White & Cooch

2017 – see introduction in Chapter 14), which provides an integrated likelihood. This likelihood can be

maximized as normal to find our MLEs and variance-covariance matrix.

To fit this random effectmodel in MARK,first select the appropriate data type, ‘Occupancy Estimation

with Detection <1 and Random Effects’.
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Similar to the finite-mixture modeling approach (above), we have three PIM’s: #, the mean detection

probability (�?) for each sampling occasion 9, and �. In this PIM, we are specifying a single mean

detection process (�?) with a measure of variation around this mean (�?):

If we want to consider a model where the mean changed for each sampling occasions, the PIM would

look like:

21.5. Goodness of fit

As with other models discussed in this book, occupancy models assume that at least one model in

the candidate set provides adequate fit to the data (see Chapter 5). Few goodness of fit tests exist
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for occupancy models (see MacKenzie & Bailey 2004, MacKenzie et al. 2017) and the only method

incorporated into program MARK is the median-2̂ (section 5.7, White 2002). The conceptual motivation

for this approach is covered in Chapter 5 and we refer readers to that chapter for more details. The

median-2̂ approach is well suited for detecting, and adjusting for, overdispersion that may result when

the independence assumption is violated.

The typical approach, as discussed in Chapter 5, is to use the most general model structure to estimate

the variance inflation factor, 2̂. Unfortunately, this is the most general structure without covariates, as

there is no straightforward way to simulate data using covariates in MARK. Usually, this means that

the most general structure is {#· ?C} or if there are groups of sites the general structure may be {#6 ?6∗C}.

Note, if we retrieve the model {#· ?C} from our spotted owl analysis and attempt to perform a median-

2̂ analysis, we get the following message:

Unfortunately, if we reformat our data set and omit the covariates and attempt the process again, the

following message appears:

MARK will still run the median approach but only using the detection histories without missing

values. In the spotted owl case the method fails entirely because the observed deviance is negative

(−179.27380), creating a negative observed 2̂.

In summary, few goodness-of-fit tests exist for occupancy models and we refer interested readers to

MacKenzie et al. (2017) for a complete discussion of the existing methods.

21.6. The dynamic occupancy model

A natural extension of the basic occupancy model (single species, single season) is to link several

’seasons’ together to investigate site-level dynamics. This allows researchers to focus on the processes

that govern occurrence patterns, such as how and why occupied sites become extirpated (or conversely,

persist) or how and why unoccupied sites become colonized. Examining these processes can help

predict future patterns of species occurrence, often better than simply understanding occupancy-

environment relationships (Yackulic et al. 2015). Linking data in this way is similar to Pollock’s robust

design used in mark-recapture studies (Pollock 1982), where seasons and surveys represent primary
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and secondary periods, respectively (see Chapter 15).

To model the dynamic changes in species occurrence species distribution from one season to the next,

it is mathematically convenient and often biologically reasonable to do so based on a first-order Markov

process. Simply, that the probability a site is occupied in season C depends on the occupancy state of

the site in the previous season, C − 1. Thinking about how this assumption matches the life history of

the species of interest and the goal of the study may help in defining the season.

A first-order Markov dynamic occupancy model includes two additional parameters beyond that of

occurrence (#(C,8)) and detection (?(C,8 ,9)),

�C = the probability that an unoccupied site in season C is occupied in

season C + 1 (colonization),

&C = the probability that an occupied site in season C is unoccupied in

season C + 1 (extirpation).

There are several alternative parameterizations of the dynamic occupancy model (MacKenzie et al.

2002),which are implemented in program MARK. Here,we follow the parameterizationbased on initial

(season 1) occupancy (#1) and time-specific extirpation and colonization. This model is illustrated in

the following, where all possible site-level changes across three seasons are indicated:

A site is either occupied (#(C,8)) or not (1 − #(C,8)) in each season (rows in the diagram). Changes in

occupancy between seasons (columns) are based on the dynamic parameters of colonization (�C) and

extirpation probability (&C).

While the parameterization we present here focuses on initial occupancy probability, occupancy in

subsequent seasons can be derived using the recursive equation:

#C+1 = #C(1 − &C ) + (1 − #C)�C

This equation estimates the probability of occupancy in subsequent seasons by starting with the

initial occupancy estimate (#1) and projecting that estimate forward using estimates of colonization and

extirpation. Luckily, MARK computes this derived quantity of interest for us (shown in the example in

the next section), complete with standard errors and confidence intervals.

The data for the dynamic occupancy model are the same as the basic model; a target species is either

detected (1) or not detected (0) at site 8 on survey 9. These detections and non-detections are replicated

at the same sites for seasons C = 1, 2, . . . , ). Seasons do not need to have the same number of surveys

and missing surveys can be easily accommodated by using a dot (‘.’). An example detection history (ℎ)
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for a study conducted for three seasons, with three surveys in each season is,

ℎ8 = ‘010 000 101’

[To make the discrete seasons more obvious, we’ve added a space in the encounter history. In the

MARK .INP file, however, there are no spaces in the history, which is a contiguous string of 1’s and

0’s.] We know the species occurs at this site in season 1 because it was detected on survey 2, but was

not detected on surveys 1 or 3. During season 2, we don’t know whether the species was extirpated and

thus could not be detected, or whether the species persisted at the site and we simply did not detect

the species on all three surveys. During season 3, we know the site was occupied because the species

was detected on surveys 1 and 3, but went undetected on survey 2. Because we don’t know whether the

site was occupied during season 2, we also don’t know whether the site remained occupied and thus

persisted from season 2 to 3 or was unoccupied and thus was recolonized from season 2 to 3. We can

diagram the possible pathways of site-level changes that could have happened as,

As with our single season models, we can link our parameters to our detection/non-detection data

through probability statements. The probability of the observed detection history can be written as,

Pr(ℎ8 = ’010 000 101’) = #1

(
1 − ?1,1

)
?1,2

(
1 − ?1,3

)

×
[(

1 − &1

) 3∏

9=1

(
1 − ?2, 9

) (
1 − &2

)
+ &1�2

]

× ?3,1

(
1 − ?3,2

)
?3,3 .

Starting on the first line of the equation right of the equal sign, we know the site was occupied in

season 1 (#1), because of the detection on survey 2 (?1,2). Thus, we also know that we did not detect the

species on surveys 1 and 3 ((1 − ?1,1) and (1 − ?1,3), respectively).

For season 2, we don’t know whether the site was (i) occupied (i.e., no detections) or (ii) not occupied,

and thus we need to represent each possible outcome in terms of both the dynamic and detection

parameters; these probability outcomes are written on line 2 of the above equation. The first possibility

is that the species persisted (1 − &1) but was undetected. The second possibility is that the species was

locally extirpated (&1). If the first possibility occurred, the species must have persisted (1 − &2) from

season 2 to 3, as we detected it in season 3. However, if the second possibility occurred, the site must

have been recolonized after extirpation (&1�2).

Finally, regardless of the pathway,we know the site was occupied in season 3 because of the detections

on surveys 1 and 3 (?3,1 , ?3,3, respectively), though we did not detect the species on survey 2 (1 − ?3,2).
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Similar to the basic occupancy model, after stating our data in terms of probability statements, we

can link the statements together into a single likelihood, thus allowing us to estimate the unknown

parameters:

L(#1, &1 , &2, �1 , �2 , ?1,1 , ?1,2 , ?1,3 , ?2,1 , ?2,2 , ?2,3 , ?3,1 , ?3,2 , ?3,3 | ℎ1, ℎ2, . . . , ℎ= , #) =

#∏

8

Pr(ℎ8).

21.6.1. Dynamic (multi-season) occupancy – an example

Let’s explore the dynamic occupancy model using a 4-year dataset on Blue-ridge salamander (Eurycea

wilderae) occurrence in the Appalachian Mountains of the eastern United States (the survey data are

found in blueridge_slamander.inp). This species undergoes a seasonal migration from streams to

upland terrestrial areas during summer months, and can often be found some distance from running

water. Because E. wilderae occurs at low densities in terrestrial habitats, occupancy has been proposed

as a state variable of interest for large-scale monitoring programs.

Thirty-nine sites were sampled from 1998-2001 (4 years). Sites were located near trails, with ≈250m

between sites. Natural cover and cover boards were surveyed at each site. In the first year of the study,

sites were sampled once per month from June-August for a total of three surveys. In subsequent years

(1999-2001), every site was surveyed once every two weeks from April through late June for a total of

five surveys in each of these seasons. Covariates measured at each site include elevation (a continuous

covariate) and stream proximity (a binary value). Stream proximity values were categorized as two

‘Groups’: group 1 sites had a stream located within 50m of the site, and sites in group 2 were not near

streams. The researchers note that rainfall was variable from 1998-2001, and declined over the last 3

years of the study.

Create a new MARK project, and select ‘Robust Design Occupancy’ from the list of available data

types. You’ll see that many variations of this model are implemented in MARK. The first three entries

correspond to the standard dynamic occupancy model, and differ only in their parameterization. Differ-

ent parameterizations may be selected depending on the study objectives, but we will use the third entry,

‘Robust Design Occupancy with psi(1), gamma, epsilon’. We typically use this parameterization

because we find it to be the most mechanistic parameterization and because it is less prone to the

numerical convergence issues that sometimes arise when using the other parameterizations.

Select the blueridge_salamander.inp input file. There are 20 encounter occasions in this dataset (4

seasons × 5 surveys per season). In season 1 (1998), only 3 surveys were conducted so surveys 4 and 5

are coded as missing observations (‘.’), but we could have included 3 entries in this season too; either

approach is fine. Use the ‘Easy Robust Design Times’ button, enter the number of seasons (termed

primary occasions) and verify that the number of surveys in each season, or primary occasion, is 5. The

dataset has two groups related to stream proximity, as described previously; we have labeled these

groups ‘StrmNear’ and ‘StrmFar’. Finally, we have one individual covariate ‘elev’. Label these groups

and covariates using the buttons by each entry.

Open the PIM chart (shown at the top of the next page). The parameters listed on the y-axis include

occupancy in the first year of the study (1998), local extirpation (Epsilon), local colonization (Gamma),

and detection probability for each season (p). The default model shown has an initial occupancy for

each group (StrmNear, StrmFar), colonization and extirpation varying by season (i.e., year) and group,

and p varying by both season and survey in addition to group. We might name this model: ‘Psi(g)

Epsilon(g*t) Gamma(g*t) p(g*t)’.
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Run this model so that we have this PIM structure saved, but note that this model might be difficult

to interpret biologically.

Let’s explore a small setofbiologically relevanthypotheses. To keep this example simple,we’ll assume

that detection probability is constant for all surveys in all seasons, but we will model initial occurrence,

colonization, and extirpation as functions of covariates of interest. Let’s run a ‘null’ model first, where

all parameters are assumed to be constant. We’ll do this in the design matrix, though a constant model

could also be fit using the PIMs. Before moving to the design matrix, we’ll simplify the PIM structure for

detection. We will assume that detection probability is the same for all surveys within a year (primary

occasion) for each group, so we can right-click on each detection block and select ‘Constant’.
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Now let’s open a reduced design matrix with 4 parameters (betas) by clicking ‘Design | Reduced’,

and entering 4. In this model, we will constrain groups to be equivalent for each type of parameter

(initial occupancy, extirpation, colonization and detection probability).

This model has 4 parameters (B1 through B4) and assumes that initial occupancy, colonization,

extirpation, and detection are all constant across sites: (Psi(1998) Epsilon(.) Gamma(.) p(.)). We

label occupancy as being for 1998 to remind ourselves that we are using the initial occupancy parame-

terization and that occupancy estimated is for the first year of the study (1998 in this case).

Suppose biologists are interested in whether initial occupancy, colonization, and extirpation differ

between sites that are near or far from streams. Again, we could build this model using PIMs, or in

the design matrix, because it does not use individual covariates. We will build it in the design matrix

(which is, ultimately, more flexible than using PIMs):

Chapter 21. Occupancy models – single-species



21.6.1. Dynamic (multi-season) occupancy – an example 21 - 30

We might call this model: ‘Psi(strm) Epsilon(strm) Gamma(strm) p(.)’.

The researchers also wonder if the decreasing rainfall over the course of the study might influence

colonization and extirpation parameters. Though we don’t have rainfall as an annual covariate, we can

model colonization and extirpation as a function of a monotonic or linear trend (designated ‘T’ in model

names) using the design matrix: ‘Psi(1998) Eps(T) Gam(T) p(.)’.

Finally, let’s run a model where initial occupancy, colonization, and extirpation probabilities vary

with both Group (i.e., stream distance) and elevation, in an additive fashion – we’ll call this model

‘Psi(strm+elev) Eps(strm+elev) Gam(strm+elev)p(.)’.
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Take a look at the results browser with the 4 models we have run. The model where initial occupancy,

colonization, and extirpation vary among sites with and without a stream nearby (among our two

groups) is best-supported (AIC2 weight = 0.91).

If we examine the real parameter estimates from that model, we see that initial occupancy is 1.0 for

sites near streams, but occupancy a bit lower at sites further from streams (# = 0.92). Differences in

extirpation and colonization probabilities are even more pronounced for the two types of sites. Sites

near streams are less likely to go extinct and are more likely to be colonized than sites far from streams.

In addition to knowing the initial occupancy, colonization, and extirpation probabilities researchers

and managers will often be interested in seasonal estimates of occupancy. MARK derives the probability

that a site is occupied in each season using estimates of initial occupancy along with the extirpation and

colonization probabilities using the recursive equation described earlier in this section. These estimates

are accessed using the ‘Derived Parameters’ tab of the results browser.
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The first estimates listed are the annual occupancy estimates for 1998-2001 for each group of sites.

As you can see, seasonal occupancy is declining regardless of stream proximity, but the decline is more

pronounced for sites that are far from streams (Group 2). One note of caution – when colonization

and extirpation probabilities are constant, as in this model, a stationary Markov process is assumed

where occupancy will trend toward an equilibrium value. This value (sometimes noted #�&) is simply

�/(�+&) and may be of interest to researchers and biologists as it can be compared to current occupancy

estimates (as in Farris et al. 2017, Figure 3). #�& can be thought of as the projected future equilibrium

state, assuming no change in colonization or extirpation. The validity of this assumption depends on

the biology of the system and of the investigator’s expectations. Using our output from the best model,

the equilibrium occupancy estimate for sites near streams is 0.89 (= 0.75/(0.75+ 0.09)) and for sites far

from streams is 0.26 (= 0.18/(0.18 + 0.51)).

The next set of derived parameter estimates are for�, or the rate of change in occupancy. This derived

estimate is conceptually comparable to the familiar growth rate (�) associated with population models.

� is the ratio of annual occupancy probabilities (#(C+1)/#C); values of � > 1 indicate an increase in

occupancy probability while values < 1 indicate a decrease. This expression is another case of ‘odds’

– where we compare one type of proportion to another. Comparisons of � can be difficult because

5% growth for an initial occupancy of 0.9 is a fundamentally different absolute change than the same

growth when initial occupancy is 0.2. For this reason, we also may be interested in an odds ratio, which

MARK calls �′ (‘lambda prime’).This metric is a ratio of the odds of occupancy at time C versus at

time C + 1 (�′
= (#(C+1)/1 − #(C+1))/(#C/1 − #C)). It can be interpreted as the amount that the odds of

occupancy at time C would be multiplied by to get the odds of occupancy at time C + 1. For example,

the final estimate in the table lists the odds of a Group 2 site being occupied in 2001 compared to in

2000. The estimate of �′ is 0.81, so non-stream sites in 2001 were only 0.81 times as likely to be occupied

as those in 2000. The ratio can also be inverted (1/0.81) to make a statement that is easier to interpret:

non-stream sites were 1.2 times more likely to be occupied in 2000 than in 2001.

21.7. The ‘false positive’ (misidentification) occupancy models

Occupancy models were initially developed to account for a one-way directional bias; species could

remain undetected at sites where they are present (i.e., false negatives; Bailey et al. 2014, MacKenzie et

al. 2017). This was a great improvement from the use of logistic or probit regression, which ignored this

important potential source of bias. However, as discussed in section (21.3.4), occupancy models rely on

the assumption, among others, that the species of interest cannot be erroneously detected at a site where

it is not present. In other words, all of the occupancy models we have described so far do not allow for
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false positive detections. But, as discussed in section (21.3.4), there are situations where false positive

detections might occur (e.g., species misidentification). When this happens, severe biases in occupancy

estimators will be induced (McClintock et al. 2010; Miller et al. 2011) unless accounted for.

What can we do about it? If possible, our best choice will always be to avoid false positive detections

using design-based solutions. We could, for instance, change our detection method and use one that

is more reliable. That’s easy to say, but not always easy to do, especially when we start considering

logistical and cost/effort constraints. If getting rid of the risk of false positives is not an option, then we

will need to account for them in our modeling. Luckily, statistical developments have included models

to handle datasets that contain false detections, which are now implemented in MARK. If false positives

are a concern in your study system, just keep reading.

Before we move forward, it is worthwhile to re-emphasize the importance of avoiding false positives

in the first place when possible. Why? Accounting for false positives through modeling increases model

complexity (number of parameters), which makes the analysis more data hungry. In other words, it

decreases the value of your dataset, rather significantly (Clement 2016). So, depending on the richness

of the data, you cannot guarantee that you will obtain ‘good estimates’ (i.e., precise enough to be useful)

when you are constrained to using the false positive models we are about to present. This is something

to bear in mind. But, if despite your best efforts and intentions your dataset contains false positives, then

you should use the models described next. Why? To avoid severe biases in your occupancy estimates.

First we describe the static (single-season) version of the false positive occupancy model. Then, we

provide an example of the multi-season false positive model, which is straightforward now that you are

familiar with the multi-season occupancy model without false positives. Let’s redefine a false positive

(or false detection) in probabilistic terms and in relation to the occupancy and observation processes. To

do so, let’s define I8 , as the true occupancy state at site 8; a site is either occupied (I8 = 1) or unoccupied

(I8 = 0). We use I to denote the latent (unobserved) occupancy state to make it clear that false positive

detections can only occur when the species is absent. In the earlier models we presented, we considered

that when a site 8 was unoccupied (I8 = 0), the only possible observational outcome at any occasion 9

was nondetection, H8 9 = 0. Thus, we considered that when a species was observed on at least one survey

(
∑�

9=1
H8 > 0), the site is occupied with certainty (Pr(I8 = 1) = 1 and, by complementarity, Pr(I8 = 0) = 0).

In other words, we assume it is impossible to get a detection at an unoccupied site.

Now that we are considering the possibility of false positives, this is not true anymore. What does that

change in terms of our modeling? It adds another stochastic process. If you recall, from section (21.1), we

described the basic occupancy model with two stochastic processes: (1) the occupancy process, defined

by probability #; and (2) the detection process, defined by ?, which was strictly conditional on I8 = 1.

With false positives, we must add a stochastic detection process for unoccupied sites (I8 = 0). Before,

we did not need this process, because when I8 = 0, the outcome was deterministic (H8 9 = 0). This means

that we now have two detection parameters. One for sites that are occupied, termed the true detection

probability, which we will refer to as ?11 (subscript ‘11’ indicating that both the observed and true state

are occupied) and one for sites that are unoccupied, termed the false detection probability, which we

will refer to as ?10 (indicating that the observed state [1; occupied] is different from the true state [0;

unoccupied]). This notation (?HI) is straightforward and it is the one used in several of the main papers

describing false positive occupancy models (Royle & Link 2006; Miller et al. 2011; Chambert et al. 2015).

An important remark, though: here, these subscripts do not refer to a specific survey 9. If we need to

add variation among surveys 9 , we will use a comma to separate HI from 9, such as: ?(HI,9). For instance,

the false detection probability at survey 3, would be written as ?10,3.

We now have three stochastic processes and three basic parameter types: #, ?11 and ?10 (we will, of

course have more parameters as we include covariates, etc.). The next step is to link these parameters

to the data through probability statements. To illustrate this, let’s imagine the same simple scenario we

used in section (21.1). We surveyed site 8 twice (� = 2) and observed the following encounter history:
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ℎ8 = ’01’. There are two possibilities for this history: (1) the site is truly occupied (#) and we failed

to detect the species on survey (1 − ?11), but succeeded on survey 2 (?11); or (2) the site is unoccupied

(1 −#) and we did not falsely detect the species on survey 1 (1− ?10), but we made a false detection on

survey 2 (?10). The corresponding probability statement (including subscripts for surveys) is:

Pr(ℎ8 = ‘01’) =
[
#
(
1 − ?11,1

)
?11,2

]
+
[(

1 − #
) (

1 − ?10,1

)
?10,2

]
.

Each block within brackets (on each side of the ’+’ sign) corresponds to one of the two possibilities

we just described verbally. On the left is the piece dealing with true detections; on the right, the piece

dealing with false detections. In the table below,we provide the probability statements (omitting survey-

specific subscripts, for the sake of simplicity) for all possible encounter histories when � = 2.

history, ℎ8 probability expression

11 #?11?11 +
(
1 − #

)
?10?10

10 #?11

(
1 − ?11

)
+
(
1 − #

)
?10

(
1 − ?10

)

01 #
(
1 − ?11

)
?11 +

(
1 − #

) (
1 − ?10

)
?10

00 #
(
1 − ?11

) (
1 − ?11

)
+
(
1 − #

) (
1 − ?10

) (
1 − ?10

)

As you can see in the table, there is always an exact symmetry, on each side of the ’+’ sign, between the

true and the false detections’ pieces of the probability statements. In this simplest version of the false

positive model, first described by Royle & Link (2006), this symmetry exists for all possible encounter

histories. OK, but is it an issue? Yes! This symmetry in the likelihood creates a situation where there

are always two equally optimal solutions (i.e., values that maximize the likelihood) for all parameters.

For instance, if # = 0.3, ?11 = 0.6 and ?10 = 0.1 are maximum likelihood estimates (MLEs), then by

symmetry, # = 0.7, ?11 = 0.4 and ?10 = 0.9 will also be MLEs (Note: the correspondence between the

two is 1 − �, where � represents any of the model parameters).

With two equal optimums, how do we know which optimum is ‘correct’? In other terms, which of

these solutions provides the best estimates, given the data at hand? In the example just used, we see

that the ‘best estimate’ of occupancy, given our data, could be either 0.3 or 0.7. Not really satisfying,

right?

To solve this issue, we need additional information: either as an additional assumption or as data. In

their seminal paper,Royle & Link (2006) solved this issue by imposing the constraint (orassumption) that

?11 > ?10. In other words, they assume the probability of true detection is higher than the probability

of false positive detection, which ensures a unique maximum of the likelihood. Consider the example

we used a few lines above:

{# = 0.3, ?11 = 0.6 and ?10 = 0.1} vs. {# = 0.7, ?11 = 0.4 and ?10 = 0.9}.

With this new constraint (?11 > ?10), we can easily see that the only possible MLE is now solution

1 (left hand side), as 0.6 > 0.1 is consistent with the assumption, but 0.4 < 0.9 is not. Although this

assumption might sometimes be relevant, it is usually preferable to rely on data to solve the symmetry

issue and make our model identifiable.

Miller et al. (2011) developed such a model and it is implemented in MARK. To utilize this model,

our dataset needs to contain some detections that we know for sure are true detections (i.e., not

false positives). So, our dataset must consist of two types of detections: (i) ambiguous (or uncertain)

detections,which can either be true or false detections; and (ii) unambiguous (or certain) true detections,
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which cannot be false positives. In their seminal work, Miller et al. (2011) considered two different

ways of obtaining unambiguous and ambiguous detections, and thus, provided two different models:

(1) the ‘two detection states’ model and (2) the ‘two detection methods’ model. In the first scenario

(two detection states), ambiguous and unambiguous detection correspond to two different types of

observations that can be made during any survey. They are thus treated as two different observation

states, one being certain, the other uncertain.

For instance, when monitoring a large predator (e.g., lynx), one might consider indirect cues (e.g.,

scat or tracks) as being ambiguous detections (e.g., as tracks can be confounded with those of another

species), but direct observations of the animal (i.e., directly seeing a lynx) to be unambiguous. In the

second scenario (two detection methods), one detection method (M1), implemented on some survey

occasions, provides unambiguous detections, while another method (M2), implemented on different

survey occasions, provides uncertain detections. For instance, some amphibian monitoring use both

aural and visual surveys. Often, aural surveys are prone to misidentification, while visual surveys

provide detections that are totally unambiguous. Only the ‘two detection states’ model is implemented

in MARK, but don’t worry, we can easily analyze the data obtained from a ‘two detection methods’

study design with this same model, by using a simple trick. We will explain this below. But first, let’s

start with the ‘two detection states’ model.

The two different types of detections are considered as different states. So, they must be distinguished

(i.e., coded differently) in the input data. In MARK, unambiguous (or certain) detections are coded as

‘2’, while ambiguous (or uncertain) detections are coded a ‘1’. As always, a non-detection is ‘0’. The

detection probabilities, for each of the 3 observation states (y), conditional on the true site occupancy

status (z) look like this:

true state H = 0 H = 1 H = 2

I = 0 1 − ?10 ?10 0

I = 1 1 − ?11 (1 − 1)?11 1?11

Here, the definition of ?11 and ?10 is pretty much the same as before: ?11 [?10] is the probability of a

detection given that the site is occupied [unoccupied].

Now that we have two types of detections (1’s and 2’s), we need an additional parameter: 1. Parameter

1 represents the probability that, given the site is occupied and a detection is made, that the detection is

unambiguous. By complementarity (1−1) is the probability of an ambiguous detection. This parameter

only applies to occupied site detections, because by definition, any detection made at an unoccupied

site is a false positive, and can only be an unambiguous detection.

This model has fourbasic parameters:#, ?11, ?10 and 1. Let’s consider the following encounterhistory:

ℎ8 = ‘201’. Here, there were three surveys; the species was detected with certainty on survey 1, it was

not detected on survey 2, and on survey 3, it was detected, but the observation was ambiguous. Because

the first detection was unambiguous, we know that this site was occupied. The probability statement

for this encounter history is:

%A(ℎ8 = ‘201’) = #1?11,1(1 − ?11,2)(1 − 1)?11,3.

Now let’s consider a similar encounter history, except that the first detection was ambiguous: ℎ8 =

‘101’. Now, each of the two detections made could be either be a true detection or a false positive, so we

need to consider the case of an unoccupied site, too. The probability statement is:

%A(ℎ8 = ‘101’) = #(1 − 1)?11,1(1 − ?11,2)(1 − 1)?11,3 + (1 − #)?10,1(1 − ?10,2)?10,3.
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Hopefully, this seems straightforward. Let’s now illustrate how to implement this model in MARK.

We will start with the single-season model. For the sake of simplicity, we will not consider covariates

here, but adding covariate effects is done in the same way as for the other occupancy models that were

present earlier in this chapter.

21.7.1. False positive single-season occupancy model in MARK

To illustrate model implementation in MARK, we will be analyzing data that we simulated, so we

know the true value of each parameter. Start a new MARK session. In the ‘Data Type’ window, select

‘Occupancy Estimation’ andchoose ‘Occupancy Estimation with false positive identifications’:

Then, select the file called FP-Example-Constant.inp and view it. Next, specify that the data consist

of 6 occasions, only 1 group and no individual covariates. Click ‘OK’.

This dataset was simulated using the following (real) parameter values: # = 0.6, ?11 = 0.65, ?10 =

0.20, 1 = 0.15. There is no time variation, and no covariate effects. Data were simulated for 100

hypothetical sites. Let’s build some models and see if we can get the same estimates back.

First let’s build the most simple model: the ‘dot’ model, where all parameters are assumed constant:

{#(.), ?11(.), ?10(.), 1(.)}. This is model is actually consistent with the ‘true’ process model used to

simulate data, so we should expect this model to do well (both in terms of model support [AIC] and

parameter estimates). Open the PIM chart. You can see the four types of parameters: psi, b, p11 and

p10. To build the constant model, right-click on each blue-box and select ‘all constant’. You should

now have only 4 parameters left and the chart should look like this:
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Next, ‘Run the model’. You can keep all default settings. In the ‘Results’ browser, you should see an

AIC2 value of ≈ 977. Here are the real parameter estimates we get:

Now let’s try to run some more complex models and see how they compare to this one, in terms of

model support (AIC). Let’s run models where ?11 and ?10 vary over time. For the three possible models,

we get the following AIC2 values:

model AIC

#(·) ?11(C) ?10(·) 1(.) 980.98

#(·) ?11(·) ?10(C) 1(·) 980.85

#(·) ?11(C) ?10(C) 1(·) 986.44

These three models receive less support than the constant model (��� = 977.01), so we would

conclude that there is no evidence for time variation in ?11 or ?10. And indeed, we know this is true as

we simulated data with constant parameters.

begin sidebar

Analyzing data collected with two different methods

As mentioned above, the two different types of detections (ambiguous and unambiguous) could be

obtained from different detection methods (e.g., visual vs. aural surveys), each method represents dif-

ferent surveys. The last part of the sentence is important. Indeed, if the two methods are implemented,

conjointly, at every sampling occasion, then we can simply apply the two state models, as we can have

each type of detection (1’s and 2’s) occur at any occasion (survey). Here we consider the case where

method M1 is deployed on some occasions, while method M2 is used on other sampling occasions.

Let’s consider the case of a study on frogs. Suppose visual surveys (method M1), which provide

unambiguous detections of the species of interest, were used on occasions 1 and 3. Aural surveys

(method M2), which are prone to false positives, were done on occasions 2, 4 and 5. All detections

from visual surveys can be coded as ’2’, given that they are unambiguous. All detections from aural

surveys should be coded as ’1’, as they are ambiguous (they can be true or false positives). Your data

would look something like this:

00211 1;

00011 1;

20211 1;

21201 1;

00000 1;

This looks very similar to data obtained under a ‘two detection states’ scenario, don’t you think?
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However, a few things are different here. First, unambiguousdetections (2’s) only occur on occasions

1 and 3 and no ambiguous detections (1’s) occur. Conversely, on occasions 2, 4 and 5, only ambiguous

occasions occur.

In our example, all sites are surveyed on each occasion, but if only a subset of sites were surveyed

with the unambiguous method (M1, visual surveys) then a subset of those sites would have missing

values, or ‘.’ , in the first or third columns of their histories. Not all sites have to be surveyed equally.

Now, the probabilities of true detection (?11) of each method are likely to be different. This is

something important to consider, and which you are probably interested in estimating anyway. We

use a superscript to differentiate the true detection parameters: ?"1
11 for method M1 (here, visual

surveys) and ?"2
11 for method M2 (here, aural surveys). The conditional detection probabilities for

each method look like this:

M1 No detection (0) Detection (2)

I = 0 1 0

I = 1 1 − ?"1
11 ?"1

11

M2 No detection (0) Detection (2)

I = 0 1 − ?10 ?10

I = 1 1 − ?"2
11 ?"2

11

First, note that the false detection parameter ?10 only applies to method M2. As for the ‘two state’

model, we have three detection parameters here too: ?10 , ?
"1
11 , ?"2

11 . To better see the link with the ‘two

state’ model, we can write the conditional detection probabilities as:

true state H = 0 H = 1 H = 2

I = 0 1 − ?10 ?10 0

I = 1 1 − (?"2
11 + ?"2

11 ) ?"2
11 ?"1

11

On occasions where visual surveys (M1) were used, we simply set ?"2
11 = 0 and ?10 = 0. When

aural surveys (M2) were used, we set ?"1
11 = 0. If you have a look at the similar table we showed

(above) for the ‘two state’ model, you can see a relationship between parameters {?11 , 1} (which is the

parameterization used by MARK) and the methods-specific parameters {?"1
11 , ?"2

11 }. We have:

?11 = ?"1
11 + ?"2

11

?"2
11 = (1 − 1)?11

?"1
11 = 1?11

We can thus easily implement the ‘two methods’ model using the parameterization of the ‘two

states’ model implemented in MARK. To do this, we will simply need to do the following:

1. Fix ?10 = 0 for occasions when Method 1 was used (occasions 1 and 3 in our example).

2. Specify different ?11 parameters for occasions when Method 1 and Method 2 were used.

In our example, occasion {1, 3} vs. {2, 4, 5}.

3. Fix 1 = 1 for occasions when Method 1 was used, and 1 = 0 for occasions when Method

1 was used. By doing so, MARK will directly provide us with method-specific ?11

estimates. This is obvious from the formulae above: when 1 = 1, ?11 = ?"1
11 and when

1 = 0, ?11 = ?"2
11 .

Chapter 21. Occupancy models – single-species



21.7.1. False positive single-season occupancy model in MARK 21 - 39

Let’s illustrate this with a real example. We simulated data (see file FP-two-methods.inp), using

the following constant parameter values: # = 0.35, ?"1
11 = 0.55, ?"2

11 = 0.75, ?10 = 0.10. There are

5 sampling occasions. Method 1 (unambiguous) was used on occasions 1 and 3, while Method 2

(ambiguous) was used on surveys 2, 4 and 5. In MARK, open the PIMs for all 4 parameter types and

number the parameters as follows:

Then, do ‘Run | Current Model’ and click on ‘Fix Parameters’. We have 7 numbered parameters

(see PIMs), but as we are running a constant model, there are only 4 real parameters. So, we should

be fixing values for 3 parameters. Indeed, we fix the following: (i) Parameter 1: ?10 = 0, (ii) Parameter

5: 1 = 1, and (iii) Parameter 6: 1 = 0. This ensures that we define parameter 3 as ?"1
11 and parameter 4

as ?"2
11 .

Click ‘OK’ and run the model. The result should give you an AIC2 of about 4458.46. The parameter

estimates are the following:
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These are indeed very close to the values we used to simulate the data. Note that, as expected,

parameter 3 (p11) corresponds to ?"1
11 (real value = 0.55) and parameter 4 (p11) corresponds to ?"2

11
(real value = 0.75).

This was for the constant model. But what if you want to assess time variation in the probability

detection of either Method 1, or Method 2, or both? It is actually very easy. Let say you want to model

occasion-specific variation for the detection parameter of Method 1 (?"1
11 ) which was employed on

occasions 1 and 3. To do this, open the PIM of p11, and change the numbering as follows: p11: 3 5 4

5 5.

Now, ?"1
11 corresponds to two parameters (3 and 4), one for each occasion that Method 1 was used.

?"2
11 is now parameter 5 and is constant over time. ‘Renumber without overlap’ to get the correct

numbering for the other parameters (the numbering now goes from 1 to 8). Because the numbering

has changed, we now need to fix the following parameters : (i) Parameter 1: ?10 = 0, (ii) Parameter 6:

1 = 1, (iii) Parameter 7: 1 = 0.

Run the model. This model gets an AIC2 of 4,460.20 and the two estimates for ?"1
11 are 0.51

(parameter 3) and 0.53 (parameter 4) for occasion 1 and 3, respectively. All other parameter estimates

are virtually the same as before.

To run a model where only ?"2
11 varies over time, but ?"1

11 is constant, simply change the PIM

numbering to: p11: 3 4 3 5 6. Parameters 4, 5 and 6 will provide you estimates of ?"2
11 for occasions

2, 4 and 5, respectively. ?"1
11 is simply parameter 3.

To run a model where both ?"1
11 and ?"2

11 vary, simply make p11 all-varying. So, change the PIM

numbering to: p11: 3 5 4 6 7. Parameters 3 and 4 will provide you estimates of ?"1
11 for occasions 1

and 3, respectively. Parameters 4, 5 and 6 will provide you estimates of ?"2
11 for occasions 2, 4 and 5,

respectively. Each time you change the PIM numbering, remember to (1) renumber without overlap

and (2) modify and correctly assign fixed parameters’ values for the 1 parameter(s).

end sidebar

21.7.2. The dynamic (multi-season) occupancy model with false positives

If you understand (1) the ‘classic’ dynamic occupancy model (see section 21.6), and (2) the single-season

false-positives model we just presented, it should be relatively straightforward for you to understand

(and implement) the dynamic false-positives occupancy model. As you might expect, this model simply

combines both processes:

(1) Dynamic Occupancy Process: We now allow occupancy to change between seasons (i.e., primary

occasions). To model the dynamic occupancy process, we use the 3 basic parameters: (i) #1 is the initial

occupancy probability (i.e., occupancy in season 1), (ii) & is the probability of site extirpation, and (iii)

� is the probability of site colonization.

These parameters are exactly the same as those defined in section (21.6). Remember that data should

be collected following a robustdesign,withmultiple surveys in eachseason. Occupancy can only change

between seasons, and within any season, we assume closure, so occupancy does not change between

surveys within a season.

(2) Detection Process:We consider the possibility thatboth false negative and false positive detections

may occur at any occasion. To model this detection process, we still use the 3 parameters: ?10 , ?11 and 1.

Here, again, it is important that our datasets has two types of detections: ambiguous and unambiguous.

We can implement the ‘two detection-states’ or the ‘two detection-methods’ versions of the model,using

the same procedure we explained earlier in this section.

Let’s consider how we run this model in MARK. Here again, we simulated data and created a data

file example. We considered 4 seasons, with 3 surveys in each season. We used the following constant
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parameter values to simulate the data:

psi = 0.40 # Pr(Initial Occupancy)

epsilon = 0.10 # Pr(Extirpation)

gamma = 0.25 # Pr(Colonization)

p10 = 0.20 # Pr(y=1|z=0), i.e., False Positive Probability

p11 = 0.65 # Pr(y=1|z=1), i.e., True Detection Probability

Probability b = 0.7 # Proportion of "certain" detection (see Miller et al. 2011).

Open MARK,select the ‘Robust Design Occupancy’ data type andchoose ‘Robust Design Occupancy

False Positives Estimation with psi(1), gamma, epsilon’.

Click ‘OK’. To use our simulated data file, select the file called Dynamic-FP-example.inp. Look at it

if you wish. You can see that there are 12 occasions (i.e., 4 seasons × 3 surveys/season ). Next, specify

the total number of encounter occasions (12).

Then click on the ‘Easy Robust Design’ button to specify that there are 4 primary occasions (seasons).
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In the window that pops up (see below), specify 3 surveys (secondary occasions) for each season

(primary occasion). These values have defaulted in so leave as is. If, in some years, you had more or less

occasions you could adjust this here. Then, click ‘OK’.

Click ‘OK’ again in the major window to get started with the analysis.

Have a look at the PIM chart. Remember that in MARK seasons are referred to as ‘sessions’. You can

see from the PIM chart that, by default, MARK assumes different ‘detection’ parameters (p10, p11 and

b) for each season. For instance, you can read on the y-axis of the chart: ‘p10 Ses 1 Grp 1’, this is p10

for season 1 (Ses 1 = Season 1); ‘p10 Ses 2 Grp 1’, this is p10 for season 2 (Ses 2 = Season 2), and so

on.

Let’s first build a model where all basic parameters are constant. This is in fact the model we used

to simulate data. In the PIM chart, we first stack the different seasons (sessions), for parameters p10,

p11 and b, just like in the picture below. This specifies that these parameters are equal across seasons.

Remember to ‘renumber with overlap’. It should look like the following:
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Next, we want set all these ‘blue boxes’ as ‘constant’ over surveys. Use right click, and ‘constant’ to

do this. Renumber with overlap. It should look like this:

Six parameters remain, which is indeed what we want for this simple model. One parameter for each

of the six basic parameter: psi, epsilon, gamma, p10, p11 and b. Now, simply go ahead and just run the

model. It gets an AIC2 value of 22,061.5940. Let’s look at the parameter estimates:

As expected, these are very close to the real values we used to simulate the data: # = 0.4, & = 0.1, � =

0.25, ?10 = 0.2, ?11 = 0.65, 1 = 0.7. You can then go ahead and proceed as usual to run any other model.

21.8. Summary

The occupancy models described in this chapter represent only a subset of the occupancy models

available in program MARK. You’ve likely noticed the variety of options (models) when selecting

’Occupancy’ data types. We believe that the single-season and dynamic versions of the multi-state

occupancy models (Nichols et al. 2007, MacKenzie et al. 2009), models involving multiple scales (e.g.,

Nichols et al. 2008, Hines et al. 2010), and species-interaction models (2 Species Occupancy Estimation

models, Richmond et al. 2010 – see Chapter 22) are all extremely useful with many applications in the

literature. Currently, we refer readers to the help files in MARK for details about these models and
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associated references in the primary literature.

Relative to mark-recapture information, occurrence data is relatively easy to collect, and historic data

with replication is often available. The combined flexibility of occupancy models and the availability of

detection-nondetection data has led to investigators to consider occupancy models for their applications.

For any occupancy-based study, we believe investigators should clearly define the following elements as

applied to their objectives: sample units (i.e. sites), the time period over which occurrence is assumed

to be static (i.e. season(s)), replicate surveys, and the criteria that constitute ‘detection’ (Bailey et al.

2014). Relating these definitions of sites, surveys, and season to the study’s biological questions is the

foundation of any good study design and influences the interpretation of resulting model parameters.

For example, in their summary paper Bailey et al. (2014) used a single host-pathogen system to

demonstrate how study design and focal scale change depending on the motivating biological ques-

tion(s). In their range of examples, biological interest focused on investigating factors influencing

pathogen prevalence in a single host population, or estimating pathogen occurrence across multiple

host populations or across various habitat types. Accordingly, the appropriate definition of ’site’ varied

from an individual amphibian, to host populations, to potential amphibian breeding habitats. Season

and survey definitions ranged from a single visit (season) with replicate qPCR surveys (qPCR wells),

to a defined amphibian breeding season where surveys may include a mixture of pathogen samples

from individual hosts (e.g., swabs) and environmental surveys (e.g., water filter samples). Different

biological questions lead to unique study designs and associated definitions of site, season, and surveys.

In closing, we encourage investigators to think carefully about their study design and the associated

model assumptions when considering occupancy models to address their own biological questions.

21.9. References

Bailey, L. L., Reid, J. A., Forsman, E. D., and Nichols, J. D. (2009) Modeling co-occurrence of northern

spotted and barred owls: accounting for detection probability differences. Biological Conservation,

142, 2983-2989.

Bailey, L. L., MacKenzie, D. I., and Nichols, J. D. (2014) Advances and applications of occupancy models

(E. G. Cooch, Ed.). Methods in Ecology and Evolution, 5, 1269-1279.

Chambert, T., Miller, D. A. W., and Nichols, J. D. (2015) Modeling false positive detections in species

occurrence data under different study designs. Ecology, 96, 332-339.

Chambert, T., Kendall, W. L., Hines, J. E., Nichols, J. D., Pedrini, P., Waddle, J. H.,Tavecchia, G., Walls,

S. C., and Tenan, S. (2015) Testing hypotheses on distribution shifts and changes in phenology of

imperfectly detectable species. Methods in Ecology and Evolution, 6, 638-647.

Clement, M. J. (2016) Designing occupancy studies when false-positive detections occur. Methods in

Ecology and Evolution, 7, 1538-1547.

Farris, Z. J., Gerber, B. D., Valenta, K., Rafaliarison, R., Razafimahaimodison, J. C., Larney, E., Rajaonar-

ivelo, T., Randriana, Z., Wright, P. C., and Chapman, C. A. (2017) Threats to a rainforest carnivore

community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biological

Conservation, 210, 116-124.

Gerber, B. D., Karpanty, S. M., and Randrianantenaina, J. (2012) The impact of forest logging and frag-

mentation on carnivore species composition, density and occupancy in Madagascar’s rainforests.

Oryx, 46, 414-422.

Gerber, B. D., Williams, P. J., and Bailey, L. L. (2014) Primates and cameras. International Journal of Prima-

tology, 35, 841-858.

Chapter 21. Occupancy models – single-species



21.9. References 21 - 45

Gimenez, O., and Choquet, R. (2010) Individual heterogeneity in studies on marked animals using

numerical integration: capture-recapture mixed models. Ecology, 91, 951-957.

Hines, J., Nichols, J. D., Royle, J. A.,MacKenzie, D. I., Gopalaswamy, A., Kumar, N. and Karanth, K. (2010)

Tigers on trails: Occupancy modeling for cluster sampling. Ecological Applications, 20, 1456-1466.

Kendall, W. L. (1999) Robustness of closed capture-recapture methods to violations of the closure

assumption. Ecology, 80, 2517-2525.

Kendall, W. L., and White, G. C. (2009) A cautionary note on substituting spatial subunits for repeated

temporal sampling in studies of site occupancy. Journal of Applied Ecology, 46, 1182-1188.

Lachish, S., Gopalaswamy, A. M., Knowles, S. C., and Sheldon, B. C. (2012) Site-occupancy modelling

as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from

imperfect diagnostic tests. Methods in Ecology and Evolution, 3, 339-348.

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2017) Occupancy

estimation and modeling: inferring patterns and dynamics of species occurrence. 2nd Edition.

Academic Press, Burlington, MA, USA. 648 pp.

MacKenzie, D. I., Nichols, J. D., Seamans, M., and Gutierrez, R. (2009) Modeling species occurrence

dynamics with multiple states and imperfect detection. Ecology, 90, 823-835.

Martin, D. J., White, G. C., and Pusateri, F. M. (2007) Occupancy rates by swift foxes (Vulpes velox) in

eastern Colorado. The Southwestern Naturalist, 52, 541-551.

McClintock, B. T., and White, G. C. (2009) A less field-intensive robust design for estimating demo-

graphic parameters with mark-resight data. Ecology, 90, 313-320.

McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simons, T. R. (2010) Unmodeled observation error

induces bias when inferring patterns and dynamics of species occurrence via aural detections.

Ecology, 91, 2446-2454.

Miller, D. A. W., Nichols, J. D., Gude, J. A., Rich, L. N., Podruzny, K. M., Hines, J. E., and Mitchell, M. S.

(2013) Determining occurrence dynamics when false positives occur: estimating the range dynamics

of wolves from public survey data. PLOSOne, 8,[e65808].

Miller, D. A. W., Nichols, J. D., McClintock, B. T., Grant, E. H. C., Bailey, L. L., and Weir, L. A. (2011) Im-

proving occupancy estimation when two types of observational error occur: non-detection and

species misidentification. Ecology, 92, 1422-1428.

Miller, D. A. W., Weir, L. A., McClintock, B. T., Grant, E. H. C., Bailey, L. L., and Simons, T. R. (2012) Ex-

perimental investigation of false positive errors in auditory species occurrence surveys. Ecological

Applications, 22, 1665-1674.

Nichols, J. D., Hines, J. E., MacKenzie, D. I., Seamans, M., andGutierrez, R. (2007) Occupancy estimation

and modeling with multiple states and state uncertainty. Ecology, 88, 1395-1400.

Nichols, J. D., Bailey, L. L., O’Connell, A., Talancy, N., Grant, E., Gilbert, A., Annand, E., Husband, T., and

Hines, J. (2008) Multi-scale occupancy estimation and modelling using multiple detection methods.

Journal of Applied Ecology, 45, 1321-1329.

Otto, C. R., Bailey, L. L., and Roloff, G. J. (2013) Improving species occupancy estimation when sampling

violates the closure assumption. Ecography, 36, 1299-1309.

Pledger,S., and Phillpot,P. (2008) Using mixtures to model heterogeneity in ecological capture-recapture

studies. Biometrical Journal, 50, 1022-1034.

Pillay, R., Miller, D. A. W., Hines, J. E., Joshi, A. A., and Madhusudan, M. D. (2014) Accounting for false

positives improves estimates of occupancy from key informant interviews. Diversity and Distribu-

tions, 20, 223-235.

Chapter 21. Occupancy models – single-species



21.9. References 21 - 46

Richmond, O., Hines, J., and Beissinger, S. (2010) Two-species occupancy models: a new parameteriza-

tion applied to co-occurrence of secretive rails. Ecological Applications, 20, 2036-2046.

Rodda, G. H., Dean-Bradley, K., Campbell, E. W., Fritts, T. H., Lardner, B., Yackel Adams, A. A., and

Reed, R. N. (2015) Stability of detectability over 17 years at a single site and other lizard detection

comparisons from Guam. Journal of Herpetology, 49, 513-521.

Rota, C. T., Fletcher Jr., R. J., Dorazio, R. M., and Betts, M. G. (2009) Occupancy estimation and the closure

assumption. Journal of Applied Ecology, 46, 1173-1181.

Ruiz-Gutiérrez, V., Zipkin, E. F., and Dhondt, A. A. (2010) Occupancy dynamics in a tropical bird

community: unexpectedly high forest use by birds classified as non-forest species. Journal of Applied

Ecology, 47, 621-630.

Royle, J. A., and Nichols, J. D. (2003) Estimating abundance from repeated presence-absence data or

point counts. Ecology, 84, 777-790.

Royle, J. A., and Link, W. A. (2006) Generalized site occupancy models allowing for false positive and

false negative errors. Ecology, 87, 835-841.

Simons, T. R., Alldredge, M. W., Pollock, K. H., and Wettroth, J. M. (2007) Experimental analysis of the

auditory detection process on avian point counts. The Auk, 124, 986-999.

Weir,L. A.,Royle, J. A.,Nanjappa,P.,and Jung,R.E. (2005) Modeling anuran detection andsite occupancy

on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. Journal of

Herpetology, 39, 627-639.

Chapter 21. Occupancy models – single-species


	21 Occupancy models – single-species
	21.1 The static (single-season) occupancy model
	21.1.1 Single-season occupancy model – example without covariates
	21.1.2 Single-season occupancy model – incorporating covariates
	21.1.3 An example with covariates

	21.2 Model averaging
	21.3 Model assumptions
	21.3.1 Closure
	21.3.2 Unmodeled heterogeneity in occupancy or detection probability
	21.3.3 Lack of independence
	21.3.4 False positives

	21.4 Unobserved detection heterogeneity
	21.4.1 Finite mixtures
	21.4.2 Random effects

	21.5 Goodness of fit
	21.6 The dynamic occupancy model
	21.6.1 Dynamic (multi-season) occupancy – an example

	21.7 The `false positive' (misidentification) occupancy models
	21.7.1 False positive single-season occupancy model in MARK
	21.7.2 The dynamic (multi-season) occupancy model with false positives

	21.8 Summary
	21.9 References


